If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+3x=32
We move all terms to the left:
5x^2+3x-(32)=0
a = 5; b = 3; c = -32;
Δ = b2-4ac
Δ = 32-4·5·(-32)
Δ = 649
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{649}}{2*5}=\frac{-3-\sqrt{649}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{649}}{2*5}=\frac{-3+\sqrt{649}}{10} $
| s=100-2*180 | | v+1.96=7.35 | | (2x-6)=6x | | h+12=33 | | 4x-7=-34+x | | (109+x)+(89+x)=180 | | s=20-2*180 | | 3x+10=-x+34 | | 8-2k=30 | | 2-2x=6x+58 | | -10x+3=−7x−3 | | s=15-2*180 | | 29=22+w | | -7x+5=32-4x | | s=14-2*180 | | x^2+50x-75000=0 | | -1/3(2-6p)=8/3+p | | s=12-2*180 | | 4x3+5x2-6x=0 | | 4g-10=2g | | 32=2a-8 | | s=10-2*180 | | 3n-8n-6n=12 | | s=9-2*180 | | h-5=-30 | | 5/8x-3/4=1/2 | | 18(3y+3)=108 | | s=8-2*180 | | 135=23x+(-1+45x) | | 6x+5-4x+3=15-(7-2x) | | s=7-2*180 | | 135=-1+45x+23 |